URL散列算法-ELF Hash法 CSDN博客

来源:百度文库 编辑:神马文学网 时间:2024/10/06 16:09:28
  URL散列算法-ELF Hash法 收藏
//ELFhash函数unsigned int ELFHash( char * str) {
unsigned int hash = 0 ; unsigned int x = 0 ;
while ( * str) { hash = (hash < < 4 ) + ( * str ++ ); // hash值左移4位加上一个字符
if ((x = hash & 0xF0000000L ) != 0 ) // 判断hash值的高4位是否不为0,因为不为0时需要下面特殊处理,否则上面一步的左移4位会把这高四位给移走,造成信息丢失
  {
   hash ^= (x >> 24 ); // 把刚才的高4位跟hash的低5-8位异或
   hash &= ~ x; // 把高4位清0
  }
}
return (hash & 0x7FFFFFFF ); // 希望hash值是一个非负数
}
附测试:经典字符串Hash函数测试 
01-8-22 上午 11:50:37--------------------------------------------------------------------------------
 
1 概述 
链表查找的时间效率为O(N),二分法为log2N,B+ Tree为log2N,但Hash链表查找的时间效率为O(1)。
设计高效算法往往需要使用Hash链表,常数级的查找速度是任何别的算法无法比拟的,Hash链表的构造和冲突的不同实现方法对效率当然有一定的影响,然而 Hash函数是Hash链表最核心的部分,本文尝试分析一些经典软件中使用到的字符串Hash函数在执行效率、离散性、空间利用率等方面的性能问题。
2 经典字符串Hash函数介绍 
作者阅读过大量经典软件原代码,下面分别介绍几个经典软件中出现的字符串Hash函数。
2.1 PHP中出现的字符串Hash函数 
static unsigned long hashpjw(char *arKey, unsigned int nKeyLength)
{
unsigned long h = 0, g;
char *arEnd=arKey+nKeyLength;  
while (arKey < arEnd) {
h = (h << 4) + *arKey++;
if ((g = (h & 0xF0000000))) {
h = h ^ (g >> 24);
h = h ^ g;
}
}
return h;  
2.2 OpenSSL中出现的字符串Hash函数 
unsigned long lh_strhash(char *str)
{
int i,l;
unsigned long ret=0;
unsigned short *s;  
if (str == NULL) return(0);
l=(strlen(str)+1)/2;
s=(unsigned short *)str;
for (i=0; i< i++)>
ret^=(s[i]<<(i&0x0f));
return(ret);
} */  
/* The following hash seems to work very well on normal text strings
* no collisions on /usr/dict/words and it distributes on %2^n quite
* well, not as good as MD5, but still good.
*/
unsigned long lh_strhash(const char *c)
{
unsigned long ret=0;
long n;
unsigned long v;
int r;  
if ((c == NULL) || (*c == '\0'))
return(ret);
/*
unsigned char b[16];
MD5(c,strlen(c),b);
return(b[0]|(b[1]<<8)|(b[2]<<16)|(b[3]<<24)); 
*/  
n=0x100;
while (*c)
{
v=n|(*c);
n+=0x100;
r= (int)((v>>2)^v)&0x0f;
ret=(ret<>(32-r));
ret&=0xFFFFFFFFL;
ret^=v*v;
c++;
}
return((ret>>16)^ret);
}
在下面的测量过程中我们分别将上面的两个函数标记为OpenSSL_Hash1和OpenSSL_Hash2,至于上面的实现中使用MD5算法的实现函数我们不作测试。
2.3 MySql中出现的字符串Hash函数 
#ifndef NEW_HASH_FUNCTION  
/* Calc hashvalue for a key */  
static uint calc_hashnr(const byte *key,uint length)
{
register uint nr=1, nr2=4;
while (length--)
{
nr^= (((nr & 63)+nr2)*((uint) (uchar) *key++))+ (nr << 8);
nr2+=3;
}
return((uint) nr);
}  
/* Calc hashvalue for a key, case indepenently */  
static uint calc_hashnr_caseup(const byte *key,uint length)
{
register uint nr=1, nr2=4;
while (length--)
{
nr^= (((nr & 63)+nr2)*((uint) (uchar) toupper(*key++)))+ (nr << 8);
nr2+=3;
}
return((uint) nr);
}  
#else  
/*
* Fowler/Noll/Vo hash
*
* The basis of the hash algorithm was taken from an idea sent by email to the
* IEEE Posix P1003.2 mailing list from Phong Vo (kpv@research.att.com) and
* Glenn Fowler (gsf@research.att.com). Landon Curt Noll (chongo@toad.com)
* later improved on their algorithm.
*
* The magic is in the interesting relationship between the special prime
* 16777619 (2^24 + 403) and 2^32 and 2^8.
*
* This hash produces the fewest collisions of any function that we've seen so
* far, and works well on both numbers and strings.
*/  
uint calc_hashnr(const byte *key, uint len)
{
const byte *end=key+len;
uint hash;
for (hash = 0; key < end; key++)
{
hash *= 16777619;
hash ^= (uint) *(uchar*) key;
}
return (hash);
}  
uint calc_hashnr_caseup(const byte *key, uint len)
{
const byte *end=key+len;
uint hash;
for (hash = 0; key < end; key++)
{
hash *= 16777619;
hash ^= (uint) (uchar) toupper(*key);
}
return (hash);
}  
#endif
Mysql中对字符串Hash函数还区分了大小写,我们的测试中使用不区分大小写的字符串Hash函数,另外我们将上面的两个函数分别记为MYSQL_Hash1和MYSQL_Hash2。
2.4 另一个经验字符串Hash函数 
unsigned int hash(char *str)
{
register unsigned int h;
register unsigned char *p;  
for(h=0, p = (unsigned char *)str; *p ; p++)
h = 31 * h + *p;  
return h;
}
3 测试及结果 
3.1 测试说明 
从上面给出的经典字符串Hash函数中可以看出,有的涉及到字符串大小敏感问题,我们的测试中只考虑字符串大小写敏感的函数,另外在上面的函数中有的函数需要长度参数,有的不需要长度参数,这对函数本身的效率有一定的影响,我们的测试中将对函数稍微作一点修改,全部使用长度参数,并将函数内部出现的计算长度代码删除。
我们用来作测试用的Hash链表采用经典的拉链法解决冲突,另外我们采用静态分配桶(Hash链表长度)的方法来构造Hash链表,这主要是为了简化我们的实现,并不影响我们的测试结果。
测试文本采用单词表,测试过程中从一个输入文件中读取全部不重复单词构造一个Hash表,测试内容分别是函数总调用次数、函数总调用时间、最大拉链长度、平均拉链长度、桶利用率(使用过的桶所占的比率),其中函数总调用次数是指Hash函数被调用的总次数,为了测试出函数执行时间,该值在测试过程中作了一定的放大,函数总调用时间是指Hash函数总的执行时间,最大拉链长度是指使用拉链法构造链表过程中出现的最大拉链长度,平均拉链长度指拉链的平均长度。 
测试过程中使用的机器配置如下:
PIII600笔记本,128M内存,windows 2000 server操作系统。
3.2 测试结果 
以下分别是对两个不同文本文件中的全部不重复单词构造Hash链表的测试结果,测试结果中函数调用次数放大了100倍,相应的函数调用时间也放大了100倍。
 
 
 
 从上表可以看出,这些经典软件虽然构造字符串Hash函数的方法不同,但是它们的效率都是不错的,相互之间差距很小,读者可以参考实际情况从其中借鉴使用。 本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/Java2King/archive/2009/07/30/4393642.aspx