第4講 CCD 細部構造完全解析1

来源:百度文库 编辑:神马文学网 时间:2024/07/01 11:36:56

Mr. OH!主述
ANAN 策劃
CCD  完整細部結構

SONY DSC-T7 完整架構解剖,可以區分機身、鏡頭組、影像處理核心、TFT LCD背光版(機控組)等分部
Mr.OH!在數位攝影講座 前面兩講之中,簡單的介紹了CCD 和 CMOS 基本原理和結構差異,不少同學對講座中出現的 CCD 3D 結構,還有疑問 ,特別是這些架構的作用和目的為何?這一講,Mr.OH! 再幫同學們補充 CCD 細部結構的相關知識,首先從完整的 CCD 元件談起:
CCD 元件總成

數位相機大量採用模組元件,圖右為 CCD 元件總成,圖左則是中央 CCD 放大特寫。
同學們如果沒事可以回去把數位相機撬開仔細看看 CCD的長相!不過,Mr.OH!可不保證你一定裝得回去 ,即使裝回去了,如果沾染上了灰塵造成影像畫質降低,也是一件得不償失的事。 不過,從上面的圖例將一台數位相機由完整到分部,可以瞭解數位相機工業模組化相當的徹底。我們拆開了Minolta DiMAGE 7 所使用的 5.2百萬畫素 CCD 感光元件作近攝特寫,從大到小,以這種方式同學們可以瞭解對 CCD的描述,在某方面來說 CCD 是一塊『晶片』象徵!
CCD 與影像處理核心整合示意圖

上圖是 CCD 本體與 QV、放大器、類比數位轉換器和記憶緩衝區做構成之完整元件。元件設計可以讓數位相機降低維修和檢查的成本 ,透過運用電腦偵測元件運作,檢查出特定元件問題,直接更換整個部件,達到快速維修的目的。
CCD 三明治架構

關於 CCD 的運作程序,Mr.OH! 屬意在下一講中進行完整討論,這一講我們將焦點放在 CCD 的『三明治架構』上。如果同學利用雷射切開CCD,你將會發現CCD的結構就像三明治一樣,第一層是『微型鏡頭』,第二層是『分色濾色片』以及第三層『感光匯流層』。同學們一定很奇怪,為什麼『鏡頭』 要直接做在CCD上呢?
其實,這是一個英語 語譯上的語誤:『ON-CHIP MICRO LENS』(見右上圖,CCD 顯微鏡下橫切面透視)是1980年初,由SONY領先發展出來的技術。 這是為了有效提升CCD 的總畫素,又要確保單一畫素持續縮小以維持CCD的標準體積。因此,必須擴展單一畫素的受光面積。但利用提高開口率來增加受光面積,反而使畫質變差。所以,開口率只能提升到一定的極限,否則CCD將成為劣品。為改善這個問題 SONY率先在每一感光二極體上(單一畫素)裝置微小鏡片。這個設計就像是幫CCD掛上眼鏡一樣,感光面積不再因為感測器的開口面積而決定,而改由微型鏡片的表面積來決定。如此一來,可以同時兼顧單一畫素的大小,又可在規格上提高了開口率,使感光度大幅提升。
原色 CCD / 補色 CCD

CCD的第二層是『分色濾色片』,這個部份的作用主要是幫助 CCD 具備色彩辨識的能力。回到源頭,CCD 本身僅是光與電感應器,透過分色濾片,CCD 可以分開感應不同光線的『成分』,從而在最後影響處理器還原回原始色彩。目前CCD有兩種分色方式:一是 RGB 原色分色法,另一個則是 CMYG補色分色法,這兩種方法各有利弊,過去原色和補色CCD的產量比例約在 2:1左右,2003年後由於影像處理引擎的技術和效率進步,目前超過 80%都是原色 CCD 的天下。

原色CCD的優勢在於,畫質銳利,色彩真實,但缺點則是雜訊問題。 早期採用原色CCD的數位相機,在ISO感光度上多半不允許超過400,不過新一代的影像處理引擎已經可以準確的消除雜訊問題,ISO值的限制已經不再是問題了。 不過,相對地,補色CCD由多了一個 Y 黃色濾色器,在色彩的分辨上比較仔細,但卻犧牲了部分影像解析度,而在ISO值上,補色CCD可以容忍較高的感度,一般都可設定在 800以上。補色 CCD 逐漸被市場淘汰的另一個原因在於轉換色彩的複雜性,雖然 CMYG CCD 所拍出來的數位影像比較貼近傳統底片,適合於出版輸出使用,但,CMYG 需要轉換成 RGB 使其能在一般的顯示系統中預覽圖示,無形中也增加了失真的機會,終究不敵市場的現實。

感光層

掀開 CCD的第三層是『感光匯流片』,這層主要是負責將穿透濾色層的光源轉換成電子訊號,並將訊號傳送到影像處理晶片,將影像還原。 這個部份可以說是 CCD 真正核心的部份,主要的 CCD 設計大致上分成幾個區塊。被稱為畫素 Pixel (Photodiodes)感光二極體,主要是應用於光線感應部份,Gate 區有一部份被用作電子快門,藍色區塊則是佈局為電荷通路,用來傳導電荷之用。白色區塊就是 Charge Drain,也有稱為 Shielded Shift Registers ,中文或可翻為電荷儲存區,主要功用為收集經二極體照射光線後所產生之電荷。