如何判断硬件性能和组装电脑

来源:百度文库 编辑:神马文学网 时间:2024/06/03 09:00:10
编辑 |删除 |权限设置 |更多▼更多▲ 设置置顶
推荐日志
转为私密日志
鋸終↘....    发表于2010年04月14日 20:36 阅读(0) 评论(0) 分类:个人日记 权限: 公开

硬件大全; ====================================================== 主板 ======================================================   之所以把这东西放在第一位,是因为作为它太重要。我们常见的主板是ATX主板。它是采用印刷电路板(PCB)制造而成。是在一种绝缘材料上采用电子印刷工艺制造的。市场上主要有4层板与6层板二种。常见的都是4层板。用6层PCB板设计的主板不易变形,稳定性大大提高。如果你有幸买到了6层板,那可绝对超值啊!哈!在主板的每层都布满了电路,所以,如果 PCB板烧坏,比较轻的凭借我们工程师高超的技术,可以通过搭明线维修,比较严重的话,这片主板的生命也就到此结束了!主板上面的零件看起来眼花缭乱,可他们都是非常有条有理的排列着。主要包括一个CPU插座;北桥芯片、南桥芯片、BIOS芯片等三大芯片;前端系统总线 FSB、内存总线、图形总线AGP、数据交换总线HUB、外设总线PCI等五大总线;软驱接口FDD、通用串行设备接口USB、集成驱动电子设备接口 IDE等七大接口。 一、主板上的主要芯片 1、北桥芯片 MCH 在CPU插座的左方是一个内存控制芯片,也叫北桥芯片、一般上面有一铝质的散热片。北桥芯片的主要功能是数据传输与信号控制。它一方面通过前端总线与CPU交换信号,另一方面又要与内存、AGP、南桥交换信号。北桥芯片坏了以后的现象多为不亮,有时亮后也不断死机。如果工程师判定你的北桥芯片坏了,再如果你的主板又比较老的话,基本上就没有什么维修的价值了 2、南桥芯片 ICH4 南桥芯片主要负责外部设备的数据处理与传输。比ICH4早的有ICH1、ICH2、ICH3,但它不支持USB2.0 。而ICH4 支持USB2.0 。区分它们也很简单:南桥芯片上有82801AB 82801BB 82801CB 82801DB 分别对应ICH1 ICH2  ICH3 ICH4 。南桥芯片坏后的现象也多为不亮,某些外围设备不能用,比如IDE口、FDD口等不能用,也可能是南桥坏了。因为南北桥芯片比较贵,焊接又比较特殊,取下它们需要专门的BGA仪,所以一般的维修点无法修复南北桥。 3、 BIOS芯片 FWH 它是把一些直接的硬件信息固化在一个只读存储器内。是软件和硬件之间这重要接口。系统启动时首先从它这里调用一些硬件信息,它的性能直接影响着系统软件与硬件的兼容性。例如一些早期的主板不支持大于二十G的硬盘等问题,都可以通过升级BIOS来解决。我们日常便用时遇到的一些与新设备不兼容的问题也可以通过升级来解决。如果你的主板突然不亮了,而CPU风扇仍在转动,那么你首先应该考虑BIOS芯片是否损坏。 4、系统时钟发生器 CLK 在主板的中间位置有个晶振元件,它会产生一系列高频脉冲波,这些原始的脉冲波再输入到时钟发生器芯片内,经过整形与分频,然后分配给计算机需要的各种频率。 5、 超级输入输出接口芯片 I/O 它一般位于主板的左下方或左上方,主要芯片有Winbond 与ITE,它负责把键盘、鼠标、串口进来的串行数据转化为并行数据。同时也对并口与软驱口的数据进行处理。在我们的维修现场,诸如键盘与鼠标口坏,打印口坏等一些外设不能用,多为I/O芯片坏,有时甚至造成不亮的现象。 6、声卡芯片 因为现在的主板多数都集成了声卡,而且集成的多为AC'97声卡芯片。当然,也有CMI的8738声卡芯片等。如果你的集成声卡没有声音,这儿坏了的可能性最大。 二、主板上主要的插座 1、CPU插座 目前所有的主板都采用了socket系列零拔力插座。早期的P3采用的socket370插座,现在的P4多采用 socket478 插座,早期的P4也有采用socket423插座的,in《严重警告: 本论坛严禁发布他人联系方式,违者封ID》的服务器CPU 如:至强(Xeon)则采用了socket603插座。In《严重警告: 本论坛严禁发布他人联系方式,违者封ID》 对CPU封装格式的不断变化让我们这些fan 们给他送了不少钱啊!不过近日听说in《严重警告: 本论坛严禁发布他人联系方式,违者封ID》下一代CPU的封装格式还是采用socket478的格式,这对于不断追求性能的DIYer们来说可是一个好消息啊。 2、内存总线插座 现在市场上我们能见到的内存有SDRAM、DDR SDRAM、RAMBUS三种。SDRAM内存由于DDR内存的价格下调已经逐渐淡出市场,它采用168线插座,中间与左边有两个防反插断口;DDR SDRAM由于非常高的性价比已经成为市场的主流。它采用184线插座,在中间只有一个防反插断口;RAMBUS内存虽然性能好,但是价格一直高踞不下,加上in《严重警告: 本论坛严禁发布他人联系方式,违者封ID》已经放弃了对它的支持,所以它的前途至今还只是一个悬念!它的插座采用184线RIMM插座,是在中间有两个防反插断口。 有些客户多次反映在845主板上有时内存认不全的现象,这是因为Iin《严重警告: 本论坛严禁发布他人联系方式,违者封ID》 845系列主板只能支持4个Bank (一个Bank可以理解为内存条的一面),在845系列主板上一般设有三个内存插槽,而第二个插槽与第三个插槽共享二个Bank。所以,如果你在第二个与第三个插槽插的内存条为双面的256M,那么就只能认到一个256M。 3、AGP图形总线插座 它位于CPU插座的左边,呈棕色。它的频率为64MHZ。从速度上分为AGP2X,现在的多为AGP4X,也有一些主板已经支持 AGP8X。由于不同的速度所需要的电压不同,所以一些主板不亮主要是用户把老的AGP2X显卡插在的新的AGP2X主板上,从而把AGP插座烧坏!令人欣慰的是一些新的主板已经在主板上集成了电压自动调节装置,它可以自动识别显卡的电压。 4、PCI总线插座  它呈现为白色,在AGP插座的旁边,因主板不同,多少不等。它的频率为32MHZ。多插网卡,声卡等其它一些外设。 5、IDE设备接口 它一般位于主板的下面。有四十针八十线。两个IDE口并在一起,有时一个呈绿色,表示它为IDE1。因为系统首先检测IDE1,所以 IDE1应该接系统引导硬盘。现在的主板多已支持ATA100,有得支持ATA133,但更高端的主板已经支持串行ATA,它是在并行传输速率无法进一步提高的情况下出现的一种新的、具有更高传输速度的技术,也将是下一代的主流技术。一口气说了这么多,我已经口干舌燥了,大家再看看自己的主板,是不是感觉它比以前熟悉了多了?哈哈!我们也到说再见的时候了,即然今天说主板,那么我就再说一个关于主板的消息吧,我们技服中心近日接受了一批维修的板子,我们的工程师维修起来特别困难,后来经知情人士指点,才发现这批主板的PCB板边缘都有一个针眼大小的缺口。不仔细看根本分辨不出来。大家可不要小看这个小口中,它是联想对报废主板打的专门的印记!我们居然修复了好多片,我都不得不偑服我们的技术水平了!这可不是自夸的哟!所以,大家买二手主板时可一定要小心啊! ======================================================   CPU ====================================================== 主要谈谈频率 1.凡是懂得点电脑的朋友,都应该对'频率'两个字熟悉透了吧!作为机器的核心CPU的频率当然是非常重要的,因为它能直接影响机器的性能。那么,您是否对CPU频率方面的问题了解得很透彻呢?所谓主频,也就是CPU正常工作时的时钟频率,从理论上讲CPU的主频越高,它的速度也就越快,因为频率越高,单位时钟周期内完成的指令就越多,从而速度也就越快了。但是由于各种CPU内部结构的差异(如缓存、指令集),并不是时钟频率相同速度就相同,比如PIII和赛扬,雷鸟和DURON,赛扬和 DURON,PIII与雷鸟,在相同主频下性能都不同程度的存在着差异。目前主流CPU的主频都在600MHz以上,而频率最高(注意,并非最快)的P4 已经达到1.7GHz,AMD的雷鸟也已经达到了1.3GHz,而且还会不断提升。   在486出现以后,由于CPU工作频率不断提高,而PC机的一些其他设备(如插卡、硬盘等)却受到工艺的限制,不能承受更高的频率,因此限制了CPU 频率的进一步提高。因此,出现了倍频技术,该技术能够使CPU内部工作频率变为外部频率的倍数,从而通过提升倍频而达到提升主频的目的。因此在486以后我们接触到两个新的概念--外频与倍频。它们与主频之间的关系是外频X倍频=主频。一颗CPU的外频与今天我们常说的FSB(Front side bus,前端总线)频率是相同的(注意,是频率相同),目前市场上的CPU的外频主要有66MHz(赛扬系列)、100MHz(部分PIII和部分雷鸟以及所有P4和DURON)、133MHz(部分PIII和部分雷鸟)。值得一提的是,目前有些媒体宣传一些CPU的外频达到了200MHz (DURON)、266MHz(雷鸟)甚至400MHz(P4),实际上是把外频与前端总线混为一谈了,其实它们的外频仍然是100MHz和 133MHz,但是由于采用了特殊的技术,使前端总线能够在一个时钟周期内完成2次甚至4次传输,因此相当于将前端总线频率提升了好几倍。不过从外频与倍频的定义来看,它们的外频并未因此而发生改变,希望大家注意这一点。今天外频并未比当初提升多少,但是倍频技术今天已经发展到一个很高的阶段。以往的倍频都只能达到2-3倍,而现在的P4、雷鸟都已经达到了10倍以上,真不知道以后还会不会更高。眼下的CPU倍频一般都已经在出厂前被锁定(除了部分工程样品),而外频则未上锁。部分CPU如AMD的DURON和雷鸟能够通过特殊手段对其倍频进行解锁,而IN《严重警告: 本论坛严禁发布他人联系方式,违者封ID》产CPU则不行。   由于外频不断提高,渐渐地提高到其他设备无法承受了,因此出现了分频技术(其实这是主板北桥芯片的功能)。分频技术就是通过主板的北桥芯片将CPU外频降低,然后再提供给各插卡、硬盘等设备。早期的66MHz外频时代是PCI设备2分频,AGP设备不分频;后来的100MHz外频时代则是PCI设备3 分频,AGP设备2/3分频(有些100MHz的北桥芯片也支持PCI设备4分频);目前的北桥芯片一般都支持133MHz外频,即PCI设备4分频、 AGP设备2分频。总之,在标准外频(66MHz、100MHz、133MHz)下北桥芯片必须使PCI设备工作在33MHz,AGP设备工作在 66MHz,才能说该芯片能正式支持该种外频。   最后再来谈谈CPU的超频。CPU超频其实就是通过提高外频或者倍频的手段来提高CPU主频从而提升整个系统的性能。超频的历史已经很久远(其实也就几年),但是真正为大家所喜爱则是从赛扬系列的出产而开始的,其中赛扬300A超450、366超550直到今天还为人们所津津乐道。而它们就是通过将赛扬CPU的66MHz外频提升到100MHz从而提升了CPU的主频。而早期的DURON超频则与赛扬不同,它是通过破解倍频锁然后提升倍频的方式来提高频率。总的看来,超倍频比超外频更稳定,因为超倍频没有改变外频,也就不会影响到其他设备的正常运作;但是如果超外频,就可能遇到非标准外频如 75MHz、83MHz、112MHz等,这些情况下由于分频技术的限制,致使其他设备都不能工作在正常的频率下,从而可能造成系统的不稳定,甚至出现硬盘数据丢失、严重的可能损坏。因此,笔者在这里告诫大家:超频虽有好处,但是也十分危险,所以请大家慎重超频! 2.关于超频 如果是AMD的CPU要超的话就了解一下他的频率极限吧   AMD在不久前发布了它们全新的Athlon XP处理器,其频率分别显XP1500+,1600+,1700+和1800+。为了对抗In《严重警告: 本论坛严禁发布他人联系方式,违者封ID》 Pentium4处理器,Athlon XP重新采用了PR值(性能指数)来标称处理器,而Ahlon XP1600+意味着拥有与Pentium 4 1600MHz相同的性能。   Athlon XP采用了全新基于0.18微米制程的Palonmino核心,其核心面积由雷鸟的120mm2增加为128mm2。而封装方式也变为类似FC-PGA PentiumIII的OPGA封装。AMD宣称在采用新核心后 Athlon XP的发热量将较同频的雷鸟低20%。而更低的散热量,自然也就意味着更强劲的超频性能。   所以,我们决定测试一下Athlon XP的超频能力。我们选择了性价比较好的Athlon XP 1600+。它比1800+要便宜许多,但超频能力似乎可以达到1900Mhz以上。   Athlon XP同样有与雷鸟类似的L1桥路,不过已被激光切断,要想超频,首先必须将L1桥路重新相连。具体连接桥路的方式可以参见本站相关文章。由于处理器默认电压为1.75v,要更好的发挥处理器的超频极限,这需要一块具备电压调节功能的主板。我们采用了磐英8K7A和8KHA+进行了对比,尽管8K7A在调节方式上较不便,但超频性能却好于新的8KHA+。   在解频之后,我们首先将倍频设置为6,然后将外频设置为最高,在8K7A下,我们将处理器超至最高200MHz(400MHz DDR)外频,通过200MHz外频下的内存性能测试,我们可以看出超频后的内存带宽已经超出AMD760芯片40%左右。   刚才的测试仅仅只是风冷状态下的结果,这不过是个开始,接下来我们将在极限致冷环境下测试处理器的超频极限。安装上水冷器后。我们将电压调至2.1v。而VDDR调至2.9v。   测试结果令人惊叹,我们最终将处理器稳定于178MHz外频下,此时频率已高达1873.89MHz。   虽然我们希望能突破1900MHz的障碍,但没有成功。同时我们也发现主板对于Athlon XP的超频也致关重要,虽然8KHA+采用更新的芯片组并拥有更好的性能,但在超频能力方面却不如其前辈8K7A。而新核心的Athlon XP超频能力,也得到了验证。 ======================================================   内存 ======================================================   1.内存的基础知识 RAM技术词汇   CDRAM-Cached DRAM——高速缓存存储器 CVRAM-Cached VRAM——高速缓存视频存储器 DRAM-Dynamic RAM——动态存储器 EDRAM-Enhanced DRAM——增强型动态存储器 EDO RAM-Extended Date Out RAM——外扩充数据模式存储器 EDO SRAM-Extended Date Out SRAM——外扩充数据模式静态存储器 EDO VRAM-Extended Date Out VRAM——外扩充数据模式视频存储器 FPM-Fast Page Mode——快速页模式 FRAM-Ferroelectric RAM——铁电体存储器 SDRAM-Synchronous DRAM——同步动态存储器 SRAM-Static RAM——静态存储器 SVRAM-Synchronous VRAM——同步视频存储器 3D RAM-3 DIMESION RAM——3维视频处理器专用存储器 VRAM-Video RAM——视频存储器 WRAM-Windows RAM——视频存储器(图形处理能力优于VRAM) MDRAM-MultiBank DRAM——多槽动态存储器 SGRAM-Signal RAM——单口存储器 ======================================================   显卡 ======================================================   对于每一位追求电脑性能的DIY来说,显卡无疑是最重要的一样配件。在这个显卡技术高速发展的阶段,虽然可选择的显卡芯片厂商减少了,但基于相同厂商的显卡型号却分得很细,性能也各不相同。其中繁复处可能即便是专业人员也难以尽述。用户选择显卡的时候对一些专业数据接触也多了,简单点如芯片内核频率、显存频率,复杂点如像素填充率、显存带宽等。各显卡品牌在各自的显卡描述中也有这方面提及,但对于有些方面可能会有故意忽略某些细节,只提供那些炫目的优势数据,用户没有完整的了解,这是缺乏公平性的。这里我主要给大家介绍一下显卡的性能参数,如何根据这些参数确定显卡的性能,希望你在下次选购显卡时能更好的选到自已所需的产品。   首先我们了解一下对于一块显卡来说最重要的指标是什么。这里排除显卡对整个系统显示性能起决定性作用的包括了CPU、内存、主板和驱动软件。这样一个平台必须处理大量几何运算,如大家常听到的T&L即光源和变形处理技术就需要强劲的浮点运算并占用主存储器带宽。如果显卡不带硬件T&L 功能,这部分任务就全部落在CPU、内存和主板组成的工作组上。在图形帧幅计算时,顶点和纹理通过总线(即PCI或者AGP 1x、2x、4x)传送至3D卡。   这时如果这个平台越快,所传输的帧幅也越多。这些影响显卡性能的外因并不是我今天想讲的,对于显卡本身最重要的是其芯片提供的像素填充率和它的显存带宽。下面让我们来了解它们:   像素填充率的最大值为3D时钟乘以渲染途径的数量。如NVIDIA的GeForce 2 GTS芯片,核心频率为200 MHz,4条渲染管道,每条渲染管道包含2个纹理单元。那么它的填充率就为4x2像素x2亿/秒=16亿像素/秒。这里的像素组成了我们在显示屏上看到的画面,在800x600分辨率下一共就有800x600=480,000个像素,以此类推1024x768分辨率就有1024x768=786,432个像素。我们在玩游戏和用一些图形软件常设置分辨率,当分辨率越高时显示芯片就会渲染更多的像素,因此填充率的大小对衡量一块显卡的性能有重要的意义。刚才我们计算了GTS的填充率为16亿像素/秒,下面我们看看MX200。它的标准核心频率为175,渲染管道只有2条,那么它的填充率为2x2像素 x1.75亿/秒=7亿像素/秒,这是它比GTS的性能相差一半的一个重要原因。大家知道了,填充率的大小取决于显示芯片,目前只要买正规厂商的显卡都不会在芯片上有什么机关,一分钱一分货,而我下面重点要讲的显存就没有这么透明了。   我们在购买显卡时常可以看到关于显存的参数,主要有显存的速度,以纳秒为单位;显存的工作频率,以MHz为单位;显存的数据位宽,以bit为单位。这里显存的速度决定了其工作频率,如-7.5ns的显存标准频率可上133MHz ,-5ns的显存标准频率可上200MHz。但在显卡上有时显存工作频率与其速度不成正比,如Geforce3普遍采用3.8ns的DDR显存,标准应该是263MHz ,因是DDRAM则标准频率为526MHz,而我们知道Geforce3的显存标准频率为460MHz,给用户预留了很大的超频空间。而也有显存速度标为 -7ns的,本应为143MHz但却默认工作频率为166MHz ;有的显存速度标为-4.5ns却不能上222MHz。所以在购买显卡时单看显存芯片上标识的速度值并不可*,一定要询问清楚显存的默认工作频率。   显存的数据位宽是一项经常被用户忽略的参数,但是其重要性甚至要超过显存的工作频率,因为位宽决定了显存带宽,而显存带宽已经成为现在制约显卡性能的瓶颈。显示芯片与显存之间的数据交换速度就是显存的带宽,单只芯片有强大的处理能力, 但显存带宽不高的话,显存将制约着这块芯片无法达到其设计处理能力。我们把Geforce3的显存频率超到500MHz,这时带宽高达8GB/s,但是在一些复杂图形环境一样会因显存带宽不够而影响到处理速度。在显卡工作过程中,Z缓冲器、帧缓冲器和纹理缓冲器都会大幅占用显存带宽资源。带宽是3D芯片与本地存储器传输的数据量标准,这时候显存的容量并不重要,也不会影响到带宽,相同显存带宽的显卡采用64MB和32MB显存在性能上区别不大。因为这时候系统的瓶颈在显存带宽上,当碰到大量像素渲染工作时,显存带宽不足会造成数据传输堵塞,导致显示芯片等待而影响到速度。目前显存主要分为64位和128位,在相同的工作频率下,64位显存的带宽只有128位显存的一半。显存带宽的计算方法是带宽=工作频率X数据位宽/8。这也就是为什么Geforce2 MX200(64位SDR)的性能远远不如Geforce2 MX400(128位SDR)的原因了。许多显卡广告中对64位显存避而不谈,采用不告知政策,用户在采购显卡时应该问清楚这一问题,在相同的频率下, 16M 128bit的性能可能比32M 64bit还要好的,因为显存带宽对于显卡性能太重要了。对于未来显卡性能提升,当务之急是要解决显存的带宽问题。   由于现阶段内存芯片价格极低,许多厂商开始在显存容量上做文章。采用64MB显存的显卡越来越多。不过好像有一款Geforce2 MX400虽用了64MB显存,但却不采用MX400标准128位显存而改用了64位显存,这样在性能上不会有提高。个人觉得这种做法有诱骗用户的成份,以显存容量吸引用户,却不告知用户关于性能上的实情,用户得花比正规32MB显卡要多的钱去买他蓄意降低性能迎合市场的产品。但对于这个厂商在成本上也确实要高一些,最终落得双方均不划算,这种市场手段太失败,主要原因是因为策划者没有把用户放在第一位去替他们着想,只顾玩弄市场手段,最后吃亏的还是自已 ======================================================   集成声卡 ======================================================   整合技术是PC发展的趋势,目前市场上的一些主板更是将这一特色发挥地淋漓尽致,那些集成了显卡、声卡的主板正大行其道(其中以集成声卡为最为普遍)。不过,由于认识的误区,很多DIYer对集成声卡并不感兴趣,甚至把"集成声卡"与"劣质声卡"划等号,或者干脆称其为"垃圾",事实果真如此吗?     一、何谓AC'97        自从威盛(VIA)在其MVP3主板芯片中提出了"AC'97声卡"这个概念,我们便常常在形形色色的主板说明书上见到它,最后也就有了"AC'97 软声卡"一说。发展到后来,"AC'97"干脆成了软声卡的代名词。可是如果你去看看某些高档声卡的技术资料,你就会惊讶地发现"该卡采用AC'97标准",难道高档声卡也是软声卡?要知道这其中的奥妙,还须先认识AC'97规范(或标准)。     1.AC'97的提出   1996年6月,5家PC领域中颇具知名度和权威性的软硬件公司共同提出了一种全新思路的芯片级PC音源结构,也就是我们现在所见的"AC'97"标准(Audio Codec97)。     2.什么是AC'97规范  早期的ISA声卡由于集成度不高,声卡上散布了大量元器件,后来随着技术和工艺水平的发展,出现了单芯片的声卡,只用一块芯片就可以完成声卡所有的功能。但是由于声卡的数字部分和模拟部分集成在一起,很难降低电磁干扰对模拟部分的影响,使得ISA声卡信噪比并不理想。     AC'97标准则提出"双芯片"结构,即将声卡的数字与模拟两部分分开,每个部分单独使用一块芯片。AC'97标准结合了数字处理和模拟处理两方面的优点,一方面减少了由模拟线路转换至数字线路时可能会出现的噪声,营造出了更加纯净的音质;另一方面,将音效处理集成到芯片组后,可以进一步降低成本。     3.AC'97的应用  1997年后,市场上出现的PCI声卡大多数已经开始符合AC'97规范,把模拟部分的电路从声卡芯片中独立出来,成为一块称之为"Audio Codec"(多媒体数字信号编解码器)的小型芯片,而声卡的主芯片即数字部分则成为一块称之为"Digital Control"(数字信号控制器)的大芯片。     由此可见,AC'97并不是某种声卡的代称,而是一种标准。     二、集成声卡中的主流——软声卡        通过上面的介绍,我们知道一块符合AC'97标准的声卡是有"Audio Codec"与"Digital Control"两个芯片的。那么所谓的"AC'97软声卡"是什么意思呢?原来,VIA和IN《严重警告: 本论坛严禁发布他人联系方式,违者封ID》相继在主板芯片组的南桥芯片中加入声卡的功能,通过软件模拟声卡,完成一般声卡上主芯片的功能,音频输出就交给 "Audio Codec"芯片完成。所以这类主板上没有那种较大的"Digital Control"芯片,只有一块小小的"Audio Codec"芯片。下面我们就以一块创新Sound Blaster PCI128 Digital和一款i815E主板为例,来看看普通声卡与AC'97软声卡的区别。     我们很容易在声卡上找到那块比较大的主芯片——"Digital Control"及体积很小的"Audio Codec",Sound Blaster PCI128 Digital的"Digital Control"芯片(图1中的1标记处)型号是"CT5880"。作为声卡上的核心处理芯片,"Digital Control"的作用如同计算机中的CPU,需完成大部分的声卡功能,如WAV回放、MIDI合成、音效处理等,声卡的主要技术参数都取决于它,它是决定声卡档次的重要依据。距离"Digital Control"不远就是"Audio Codec"芯片,别看它小,它比普通DAC(数模转换)芯片能完成更多的功能,包括把模拟信号转换为数字信号的ADC(模数转换),多路模拟信号混合输入及输出等多种功能,跟音响中的数字编码/解码器和前置功放的作用差不多。这里的"Audio Codec"是Sigma《严重警告: 本论坛严禁发布他人联系方式,违者封ID》的STAC9708芯片。根据AC'97标准的规定,不同"Audio Codec"芯片之间的引脚兼容,原则上可以互相替换。     由于软声卡没有"Digital Control"芯片,而是采用软件模拟,所以CPU占用率比一般声卡高。如果CPU速度达不到要求或因为驱动软件有问题,就很容易产生爆音,影响音质。     三、集成声卡中的"另类"——硬声卡        由于软声卡有着诸多不足,于是一些主板厂商便想到了另外一个集成声卡的方法——将普通声卡上的"Digital Control"芯片也"搬"到主板上,即把芯片及辅助电路都集成到主板上(这种"集成声卡"其实就是传统意义上的声卡),这样相对于单独的主板和声卡来说,成本降低了很多,而且声音效果在理论上与独立声卡差不多。在这种集成硬声卡主板PCI插槽的附近,你都能找到一块大大的"Digital Control"芯片。     目前集成硬声卡的主板越来越多,常见的芯片有以下几种:     1.CT5880     CT5880是创新公司面向中低端市场的一款主打产品,采用该芯片制成的声卡就是"Sound Blaster PCI128 Digital"。它支持128复音和多音色,16个MIDI通道,并且支持4声道;支持Microsoft DirectSound、DirectSound 3D及其衍生标准。就CT5880的表现而言,能满足绝大部分对声音要求不是很高的用户需求。CT5880是目前使用最多的一款被集成到主板上的音效芯片。     2.CMI8738     CMI8738是台湾骅讯电子(C-Media)的产品。1999年自行开发出4声道音效芯片CMI8738/4CH,除了具有3D定位功能,同时也提供数字光纤接口,以及支持家庭剧院系统。在CMI8738/4CH的基础上,骅讯又推出了6声道的CMI8738/6CH音效芯片。除具备 CMI8738/4CH的所有功能外,该芯片还增加了的6声道的输出功能。它可搭配5.1的6声道或4.1